Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
1.
BMJ Med ; 2(1): e000421, 2023.
Article in English | MEDLINE | ID: covidwho-20238845

ABSTRACT

Objective: To measure the 90 day risk of arterial thromboembolism and venous thromboembolism among patients diagnosed with covid-19 in the ambulatory (ie, outpatient, emergency department, or institutional) setting during periods before and during covid-19 vaccine availability and compare results to patients with ambulatory diagnosed influenza. Design: Retrospective cohort study. Setting: Four integrated health systems and two national health insurers in the US Food and Drug Administration's Sentinel System. Participants: Patients with ambulatory diagnosed covid-19 when vaccines were unavailable in the US (period 1, 1 April-30 November 2020; n=272 065) and when vaccines were available in the US (period 2, 1 December 2020-31 May 2021; n=342 103), and patients with ambulatory diagnosed influenza (1 October 2018-30 April 2019; n=118 618). Main outcome measures: Arterial thromboembolism (hospital diagnosis of acute myocardial infarction or ischemic stroke) and venous thromboembolism (hospital diagnosis of acute deep venous thrombosis or pulmonary embolism) within 90 days after ambulatory covid-19 or influenza diagnosis. We developed propensity scores to account for differences between the cohorts and used weighted Cox regression to estimate adjusted hazard ratios of outcomes with 95% confidence intervals for covid-19 during periods 1 and 2 versus influenza. Results: 90 day absolute risk of arterial thromboembolism with covid-19 was 1.01% (95% confidence interval 0.97% to 1.05%) during period 1, 1.06% (1.03% to 1.10%) during period 2, and with influenza was 0.45% (0.41% to 0.49%). The risk of arterial thromboembolism was higher for patients with covid-19 during period 1 (adjusted hazard ratio 1.53 (95% confidence interval 1.38 to 1.69)) and period 2 (1.69 (1.53 to 1.86)) than for patients with influenza. 90 day absolute risk of venous thromboembolism with covid-19 was 0.73% (0.70% to 0.77%) during period 1, 0.88% (0.84 to 0.91%) during period 2, and with influenza was 0.18% (0.16% to 0.21%). Risk of venous thromboembolism was higher with covid-19 during period 1 (adjusted hazard ratio 2.86 (2.46 to 3.32)) and period 2 (3.56 (3.08 to 4.12)) than with influenza. Conclusions: Patients diagnosed with covid-19 in the ambulatory setting had a higher 90 day risk of admission to hospital with arterial thromboembolism and venous thromboembolism both before and after covid-19 vaccine availability compared with patients with influenza.

2.
Clin Infect Dis ; 76(10): 1822-1831, 2023 05 24.
Article in English | MEDLINE | ID: covidwho-20236763

ABSTRACT

BACKGROUND: Data on antibody kinetics are limited among individuals previously infected with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). From a cohort of healthcare personnel and other frontline workers in 6 US states, we assessed antibody waning after messenger RNA (mRNA) dose 2 and response to dose 3 according to SARS-CoV-2 infection history. METHODS: Participants submitted sera every 3 months, after SARS-CoV-2 infection, and after each mRNA vaccine dose. Sera were tested for antibodies and reported as area under the serial dilution curve (AUC). Changes in AUC values over time were compared using a linear mixed model. RESULTS: Analysis included 388 participants who received dose 3 by November 2021. There were 3 comparison groups: vaccine only with no known prior SARS-CoV-2 infection (n = 224); infection prior to dose 1 (n = 123); and infection after dose 2 and before dose 3 (n = 41). The interval from dose 2 and dose 3 was approximately 8 months. After dose 3, antibody levels rose 2.5-fold (95% confidence interval [CI] = 2.2-3.0) in group 2 and 2.9-fold (95% CI = 2.6-3.3) in group 1. Those infected within 90 days before dose 3 (and median 233 days [interquartile range, 213-246] after dose 2) did not increase significantly after dose 3. CONCLUSIONS: A third dose of mRNA vaccine typically elicited a robust humoral immune response among those with primary vaccination regardless of SARS-CoV-2 infection >3 months prior to boosting. Those with infection <3 months prior to boosting did not have a significant increase in antibody concentrations in response to a booster.


Subject(s)
COVID-19 Vaccines , COVID-19 , Humans , COVID-19/prevention & control , Antibody Formation , SARS-CoV-2 , RNA, Messenger , mRNA Vaccines , Antibodies, Viral
3.
J Gen Intern Med ; 38(6): 1484-1492, 2023 05.
Article in English | MEDLINE | ID: covidwho-2259349

ABSTRACT

BACKGROUND: Little is known about whether diabetes increases the risk of COVID-19 infection and whether measures of diabetes severity are related to COVID-19 outcomes. OBJECTIVE: Investigate diabetes severity measures as potential risk factors for COVID-19 infection and COVID-19 outcomes. DESIGN, PARTICIPANTS, MEASURES: In integrated healthcare systems in Colorado, Oregon, and Washington, we identified a cohort of adults on February 29, 2020 (n = 1,086,918) and conducted follow-up through February 28, 2021. Electronic health data and death certificates were used to identify markers of diabetes severity, covariates, and outcomes. Outcomes were COVID-19 infection (positive nucleic acid antigen test, COVID-19 hospitalization, or COVID-19 death) and severe COVID-19 (invasive mechanical ventilation or COVID-19 death). Individuals with diabetes (n = 142,340) and categories of diabetes severity measures were compared with a referent group with no diabetes (n = 944,578), adjusting for demographic variables, neighborhood deprivation index, body mass index, and comorbidities. RESULTS: Of 30,935 patients with COVID-19 infection, 996 met the criteria for severe COVID-19. Type 1 (odds ratio [OR] 1.41, 95% CI 1.27-1.57) and type 2 diabetes (OR 1.27, 95% CI 1.23-1.31) were associated with increased risk of COVID-19 infection. Insulin treatment was associated with greater COVID-19 infection risk (OR 1.43, 95% CI 1.34-1.52) than treatment with non-insulin drugs (OR 1.26, 95% 1.20-1.33) or no treatment (OR 1.24; 1.18-1.29). The relationship between glycemic control and COVID-19 infection risk was dose-dependent: from an OR of 1.21 (95% CI 1.15-1.26) for hemoglobin A1c (HbA1c) < 7% to an OR of 1.62 (95% CI 1.51-1.75) for HbA1c ≥ 9%. Risk factors for severe COVID-19 were type 1 diabetes (OR 2.87; 95% CI 1.99-4.15), type 2 diabetes (OR 1.80; 95% CI 1.55-2.09), insulin treatment (OR 2.65; 95% CI 2.13-3.28), and HbA1c ≥ 9% (OR 2.61; 95% CI 1.94-3.52). CONCLUSIONS: Diabetes and greater diabetes severity were associated with increased risks of COVID-19 infection and worse COVID-19 outcomes.


Subject(s)
COVID-19 , Diabetes Mellitus, Type 1 , Diabetes Mellitus, Type 2 , Adult , Humans , Diabetes Mellitus, Type 2/drug therapy , Glycated Hemoglobin , COVID-19/epidemiology , COVID-19/complications , Risk Factors , Diabetes Mellitus, Type 1/complications
4.
Emerg Infect Dis ; 29(3): 599-604, 2023 03.
Article in English | MEDLINE | ID: covidwho-2215194

ABSTRACT

In a cohort of essential workers in the United States previously infected with SARS-CoV-2, risk factors for reinfection included being unvaccinated, infrequent mask use, time since first infection, and being non-Hispanic Black. Protecting workers from reinfection requires a multipronged approach including up-to-date vaccination, mask use as recommended, and reduction in underlying health disparities.


Subject(s)
COVID-19 , Reinfection , Humans , SARS-CoV-2 , Risk Factors
5.
JAMA ; 328(15): 1523-1533, 2022 10 18.
Article in English | MEDLINE | ID: covidwho-2074838

ABSTRACT

Importance: Data on the epidemiology of mild to moderately severe COVID-19 are needed to inform public health guidance. Objective: To evaluate associations between 2 or 3 doses of mRNA COVID-19 vaccine and attenuation of symptoms and viral RNA load across SARS-CoV-2 viral lineages. Design, Setting, and Participants: A prospective cohort study of essential and frontline workers in Arizona, Florida, Minnesota, Oregon, Texas, and Utah with COVID-19 infection confirmed by reverse transcriptase-polymerase chain reaction testing and lineage classified by whole genome sequencing of specimens self-collected weekly and at COVID-19 illness symptom onset. This analysis was conducted among 1199 participants with SARS-CoV-2 from December 14, 2020, to April 19, 2022, with follow-up until May 9, 2022, reported. Exposures: SARS-CoV-2 lineage (origin strain, Delta variant, Omicron variant) and COVID-19 vaccination status. Main Outcomes and Measures: Clinical outcomes included presence of symptoms, specific symptoms (including fever or chills), illness duration, and medical care seeking. Virologic outcomes included viral load by quantitative reverse transcriptase-polymerase chain reaction testing along with viral viability. Results: Among 1199 participants with COVID-19 infection (714 [59.5%] women; median age, 41 years), 14.0% were infected with the origin strain, 24.0% with the Delta variant, and 62.0% with the Omicron variant. Participants vaccinated with the second vaccine dose 14 to 149 days before Delta infection were significantly less likely to be symptomatic compared with unvaccinated participants (21/27 [77.8%] vs 74/77 [96.1%]; OR, 0.13 [95% CI, 0-0.6]) and, when symptomatic, those vaccinated with the third dose 7 to 149 days before infection were significantly less likely to report fever or chills (5/13 [38.5%] vs 62/73 [84.9%]; OR, 0.07 [95% CI, 0.0-0.3]) and reported significantly fewer days of symptoms (10.2 vs 16.4; difference, -6.1 [95% CI, -11.8 to -0.4] days). Among those with Omicron infection, the risk of symptomatic infection did not differ significantly for the 2-dose vaccination status vs unvaccinated status and was significantly higher for the 3-dose recipients vs those who were unvaccinated (327/370 [88.4%] vs 85/107 [79.4%]; OR, 2.0 [95% CI, 1.1-3.5]). Among symptomatic Omicron infections, those vaccinated with the third dose 7 to 149 days before infection compared with those who were unvaccinated were significantly less likely to report fever or chills (160/311 [51.5%] vs 64/81 [79.0%]; OR, 0.25 [95% CI, 0.1-0.5]) or seek medical care (45/308 [14.6%] vs 20/81 [24.7%]; OR, 0.45 [95% CI, 0.2-0.9]). Participants with Delta and Omicron infections who received the second dose 14 to 149 days before infection had a significantly lower mean viral load compared with unvaccinated participants (3 vs 4.1 log10 copies/µL; difference, -1.0 [95% CI, -1.7 to -0.2] for Delta and 2.8 vs 3.5 log10 copies/µL, difference, -1.0 [95% CI, -1.7 to -0.3] for Omicron). Conclusions and Relevance: In a cohort of US essential and frontline workers with SARS-CoV-2 infections, recent vaccination with 2 or 3 mRNA vaccine doses less than 150 days before infection with Delta or Omicron variants, compared with being unvaccinated, was associated with attenuated symptoms, duration of illness, medical care seeking, or viral load for some comparisons, although the precision and statistical significance of specific estimates varied.


Subject(s)
COVID-19 Vaccines , COVID-19 , Vaccination , Viral Load , Adult , Female , Humans , Male , COVID-19/diagnosis , COVID-19/genetics , COVID-19/prevention & control , COVID-19/virology , COVID-19 Vaccines/administration & dosage , COVID-19 Vaccines/therapeutic use , Prospective Studies , RNA, Viral/analysis , RNA, Viral/genetics , RNA-Directed DNA Polymerase , SARS-CoV-2/genetics , Vaccination/statistics & numerical data , United States/epidemiology , Viral Load/drug effects , Viral Load/genetics , Viral Load/statistics & numerical data , Whole Genome Sequencing , Asymptomatic Infections/epidemiology , Asymptomatic Infections/therapy , Time Factors , Patient Acceptance of Health Care/statistics & numerical data
6.
JAMA ; 328(7): 637-651, 2022 08 16.
Article in English | MEDLINE | ID: covidwho-2013212

ABSTRACT

Importance: The incidence of arterial thromboembolism and venous thromboembolism in persons with COVID-19 remains unclear. Objective: To measure the 90-day risk of arterial thromboembolism and venous thromboembolism in patients hospitalized with COVID-19 before or during COVID-19 vaccine availability vs patients hospitalized with influenza. Design, Setting, and Participants: Retrospective cohort study of 41 443 patients hospitalized with COVID-19 before vaccine availability (April-November 2020), 44 194 patients hospitalized with COVID-19 during vaccine availability (December 2020-May 2021), and 8269 patients hospitalized with influenza (October 2018-April 2019) in the US Food and Drug Administration Sentinel System (data from 2 national health insurers and 4 regional integrated health systems). Exposures: COVID-19 or influenza (identified by hospital diagnosis or nucleic acid test). Main Outcomes and Measures: Hospital diagnosis of arterial thromboembolism (acute myocardial infarction or ischemic stroke) and venous thromboembolism (deep vein thrombosis or pulmonary embolism) within 90 days. Outcomes were ascertained through July 2019 for patients with influenza and through August 2021 for patients with COVID-19. Propensity scores with fine stratification were developed to account for differences between the influenza and COVID-19 cohorts. Weighted Cox regression was used to estimate the adjusted hazard ratios (HRs) for outcomes during each COVID-19 vaccine availability period vs the influenza period. Results: A total of 85 637 patients with COVID-19 (mean age, 72 [SD, 13.0] years; 50.5% were male) and 8269 with influenza (mean age, 72 [SD, 13.3] years; 45.0% were male) were included. The 90-day absolute risk of arterial thromboembolism was 14.4% (95% CI, 13.6%-15.2%) in patients with influenza vs 15.8% (95% CI, 15.5%-16.2%) in patients with COVID-19 before vaccine availability (risk difference, 1.4% [95% CI, 1.0%-2.3%]) and 16.3% (95% CI, 16.0%-16.6%) in patients with COVID-19 during vaccine availability (risk difference, 1.9% [95% CI, 1.1%-2.7%]). Compared with patients with influenza, the risk of arterial thromboembolism was not significantly higher among patients with COVID-19 before vaccine availability (adjusted HR, 1.04 [95% CI, 0.97-1.11]) or during vaccine availability (adjusted HR, 1.07 [95% CI, 1.00-1.14]). The 90-day absolute risk of venous thromboembolism was 5.3% (95% CI, 4.9%-5.8%) in patients with influenza vs 9.5% (95% CI, 9.2%-9.7%) in patients with COVID-19 before vaccine availability (risk difference, 4.1% [95% CI, 3.6%-4.7%]) and 10.9% (95% CI, 10.6%-11.1%) in patients with COVID-19 during vaccine availability (risk difference, 5.5% [95% CI, 5.0%-6.1%]). Compared with patients with influenza, the risk of venous thromboembolism was significantly higher among patients with COVID-19 before vaccine availability (adjusted HR, 1.60 [95% CI, 1.43-1.79]) and during vaccine availability (adjusted HR, 1.89 [95% CI, 1.68-2.12]). Conclusions and Relevance: Based on data from a US public health surveillance system, hospitalization with COVID-19 before and during vaccine availability, vs hospitalization with influenza in 2018-2019, was significantly associated with a higher risk of venous thromboembolism within 90 days, but there was no significant difference in the risk of arterial thromboembolism within 90 days.


Subject(s)
COVID-19 , Influenza, Human , Ischemic Stroke , Myocardial Infarction , Pulmonary Embolism , Venous Thrombosis , Aged , Aged, 80 and over , COVID-19/epidemiology , COVID-19/prevention & control , COVID-19 Vaccines/therapeutic use , Female , Hospitalization/statistics & numerical data , Humans , Incidence , Influenza, Human/epidemiology , Ischemic Stroke/epidemiology , Male , Middle Aged , Myocardial Infarction/epidemiology , Public Health Surveillance , Pulmonary Embolism/epidemiology , Retrospective Studies , Risk , Risk Assessment , Thromboembolism/epidemiology , Thrombosis/epidemiology , United States/epidemiology , Venous Thrombosis/epidemiology
7.
JMIR Res Protoc ; 11(7): e37929, 2022 Jul 28.
Article in English | MEDLINE | ID: covidwho-1875305

ABSTRACT

BACKGROUND: Assessing the real-world effectiveness of COVID-19 vaccines and understanding the incidence and severity of SARS-CoV-2 illness in children are essential to inform policy and guide health care professionals in advising parents and caregivers of children who test positive for SARS-CoV-2. OBJECTIVE: This report describes the objectives and methods for conducting the Pediatric Research Observing Trends and Exposures in COVID-19 Timelines (PROTECT) study. PROTECT is a longitudinal prospective pediatric cohort study designed to estimate SARS-CoV-2 incidence and COVID-19 vaccine effectiveness (VE) against infection among children aged 6 months to 17 years, as well as differences in SARS-CoV-2 infection and vaccine response between children and adolescents. METHODS: The PROTECT multisite network was initiated in July 2021, which aims to enroll approximately 2305 children across four US locations and collect data over a 2-year surveillance period. The enrollment target was based on prospective power calculations and accounts for expected attrition and nonresponse. Study sites recruit parents and legal guardians of age-eligible children participating in the existing Arizona Healthcare, Emergency Response, and Other Essential Workers Surveillance (HEROES)-Research on the Epidemiology of SARS-CoV-2 in Essential Response Personnel (RECOVER) network as well as from surrounding communities. Child demographics, medical history, COVID-19 exposure, vaccination history, and parents/legal guardians' knowledge and attitudes about COVID-19 are collected at baseline and throughout the study. Mid-turbinate nasal specimens are self-collected or collected by parents/legal guardians weekly, regardless of symptoms, for SARS-CoV-2 and influenza testing via reverse transcription-polymerase chain reaction (RT-PCR) assay, and the presence of COVID-like illness (CLI) is reported. Children who test positive for SARS-CoV-2 or influenza, or report CLI are monitored weekly by online surveys to report exposure and medical utilization until no longer ill. Children, with permission of their parents/legal guardians, may elect to contribute blood at enrollment, following SARS-CoV-2 infection, following COVID-19 vaccination, and at the end of the study period. PROTECT uses electronic medical record (EMR) linkages where available, and verifies COVID-19 and influenza vaccinations through EMR or state vaccine registries. RESULTS: Data collection began in July 2021 and is expected to continue through the spring of 2023. As of April 13, 2022, 2371 children are enrolled in PROTECT. Enrollment is ongoing at all study sites. CONCLUSIONS: As COVID-19 vaccine products are authorized for use in pediatric populations, PROTECT study data will provide real-world estimates of VE in preventing infection. In addition, this prospective cohort provides a unique opportunity to further understand SARS-CoV-2 incidence, clinical course, and key knowledge gaps that may inform public health. INTERNATIONAL REGISTERED REPORT IDENTIFIER (IRRID): RR1-10.2196/37929.

8.
Clin Infect Dis ; 75(1): e827-e837, 2022 Aug 24.
Article in English | MEDLINE | ID: covidwho-1722268

ABSTRACT

BACKGROUND: Data on the development of neutralizing antibodies (nAbs) against SARS-CoV-2 after SARS-CoV-2 infection and after vaccination with mRNA COVID-19 vaccines are limited. METHODS: From a prospective cohort of 3975 adult essential and frontline workers tested weekly from August 2020 to March 2021 for SARS-CoV-2 infection by reverse transcription-polymerase chain reaction assay irrespective of symptoms, 497 participants had sera drawn after infection (170), vaccination (327), and after both infection and vaccination (50 from the infection population). Serum was collected after infection and each vaccine dose. Serum-neutralizing antibody titers against USA-WA1/2020-spike pseudotype virus were determined by the 50% inhibitory dilution. Geometric mean titers (GMTs) and corresponding fold increases were calculated using t tests and linear mixed-effects models. RESULTS: Among 170 unvaccinated participants with SARS-CoV-2 infection, 158 (93%) developed nAbs with a GMT of 1003 (95% confidence interval, 766-1315). Among 139 previously uninfected participants, 138 (99%) developed nAbs after mRNA vaccine dose 2 with a GMT of 3257 (2596-4052). GMT was higher among those receiving mRNA-1273 vaccine (GMT, 4698; 3186-6926) compared with BNT162b2 vaccine (GMT, 2309; 1825-2919). Among 32 participants with prior SARS-CoV-2 infection, GMT was 21 655 (14 766-31 756) after mRNA vaccine dose 1, without further increase after dose 2. CONCLUSIONS: A single dose of mRNA vaccine after SARS-CoV-2 infection resulted in the highest observed nAb response. Two doses of mRNA vaccine in previously uninfected participants resulted in higher nAbs to SARS-CoV-2 than after 1 dose of vaccine or SARS-CoV-2 infection alone. nAb response also differed by mRNA vaccine product.


Subject(s)
COVID-19 Vaccines , COVID-19 , 2019-nCoV Vaccine mRNA-1273 , Adult , Antibodies, Neutralizing , Antibodies, Viral , BNT162 Vaccine , COVID-19/prevention & control , Humans , Neutralization Tests , Prospective Studies , SARS-CoV-2 , Spike Glycoprotein, Coronavirus , Vaccines, Synthetic , mRNA Vaccines
9.
Influenza Other Respir Viruses ; 16(3): 585-593, 2022 05.
Article in English | MEDLINE | ID: covidwho-1621931

ABSTRACT

BACKGROUND: We sought to evaluate the impact of changes in estimates of COVID-19 vaccine effectiveness on the incidence of laboratory-confirmed infection among frontline workers at high risk for SARS-CoV-2. METHODS: We analyzed data from a prospective frontline worker cohort to estimate the incidence of COVID-19 by month as well as the association of COVID-19 vaccination, occupation, demographics, physical distancing, and mask use with infection risk. Participants completed baseline and quarterly surveys, and each week self-collected mid-turbinate nasal swabs and reported symptoms. RESULTS: Among 1018 unvaccinated and 3531 fully vaccinated workers, the monthly incidence of laboratory-confirmed SARS-CoV-2 infection in January 2021 was 13.9 (95% confidence interval [CI]: 10.4-17.4), declining to 0.5 (95% CI -0.4-1.4) per 1000 person-weeks in June. By September 2021, when the Delta variant predominated, incidence had once again risen to 13.6 (95% CI 7.8-19.4) per 1000 person-weeks. In contrast, there was no reportable incidence among fully vaccinated participants at the end of January 2021, and incidence remained low until September 2021 when it rose modestly to 4.1 (95% CI 1.9-3.8) per 1000. Below average facemask use was associated with a higher risk of infection for unvaccinated participants during exposure to persons who may have COVID-19 and vaccinated participants during hours in the community. CONCLUSIONS: COVID-19 vaccination was significantly associated with a lower risk of SARS-CoV-2 infection despite Delta variant predominance. Our data demonstrate the added protective benefit of facemask use among both unvaccinated and vaccinated frontline workers.


Subject(s)
COVID-19 , Emergency Responders , COVID-19/epidemiology , COVID-19/prevention & control , COVID-19 Vaccines , Delivery of Health Care , Humans , Incidence , Prospective Studies , SARS-CoV-2/genetics , Vaccination
10.
JMIR Res Protoc ; 10(12): e31574, 2021 Dec 03.
Article in English | MEDLINE | ID: covidwho-1555360

ABSTRACT

BACKGROUND: Workers critical to emergency response and continuity of essential services during the COVID-19 pandemic are at a disproportionally high risk of SARS-CoV-2 infection. Prospective cohort studies are needed for enhancing the understanding of the incidence of symptomatic and asymptomatic SARS-CoV-2 infections, identifying risk factors, assessing clinical outcomes, and determining the effectiveness of vaccination. OBJECTIVE: The Research on the Epidemiology of SARS-CoV-2 in Essential Response Personnel (RECOVER) prospective cohort study was designed to estimate the incidence of symptomatic and asymptomatic SARS-CoV-2 infections, examine the risk factors for infection and clinical spectrum of illness, and assess the effectiveness of vaccination among essential workers. METHODS: The RECOVER multisite network was initiated in August 2020 and aims to enroll 3000 health care personnel (HCP), first responders, and other essential and frontline workers (EFWs) at 6 US locations. Data on participant demographics, medical history, and vaccination history are collected at baseline and throughout the study. Active surveillance for the symptoms of COVID-19-like illness (CLI), access of medical care, and symptom duration is performed by text messages, emails, and direct participant or medical record reports. Participants self-collect a mid-turbinate nasal swab weekly, regardless of symptoms, and 2 additional respiratory specimens at the onset of CLI. Blood is collected upon enrollment, every 3 months, approximately 28 days after a reverse transcription polymerase chain reaction (RT-PCR)-confirmed SARS-CoV-2 infection, and 14 to 28 days after a dose of any COVID-19 vaccine. From February 2021, household members of RT-PCR-confirmed participants are self-collecting mid-turbinate nasal swabs daily for 10 days. RESULTS: The study observation period began in August 2020 and is expected to continue through spring 2022. There are 2623 actively enrolled RECOVER participants, including 280 participants who have been found to be positive for SARS-CoV-2 by RT-PCR. Enrollment is ongoing at 3 of the 6 study sites. CONCLUSIONS: Data collected through the cohort are expected to provide important public health information for essential workers at high risk for occupational exposure to SARS-CoV-2 and allow early evaluation of COVID-19 vaccine effectiveness. INTERNATIONAL REGISTERED REPORT IDENTIFIER (IRRID): DERR1-10.2196/31574.

11.
N Engl J Med ; 385(4): 320-329, 2021 07 22.
Article in English | MEDLINE | ID: covidwho-1287848

ABSTRACT

BACKGROUND: Information is limited regarding the effectiveness of the two-dose messenger RNA (mRNA) vaccines BNT162b2 (Pfizer-BioNTech) and mRNA-1273 (Moderna) in preventing infection with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and in attenuating coronavirus disease 2019 (Covid-19) when administered in real-world conditions. METHODS: We conducted a prospective cohort study involving 3975 health care personnel, first responders, and other essential and frontline workers. From December 14, 2020, to April 10, 2021, the participants completed weekly SARS-CoV-2 testing by providing mid-turbinate nasal swabs for qualitative and quantitative reverse-transcriptase-polymerase-chain-reaction (RT-PCR) analysis. The formula for calculating vaccine effectiveness was 100% × (1 - hazard ratio for SARS-CoV-2 infection in vaccinated vs. unvaccinated participants), with adjustments for the propensity to be vaccinated, study site, occupation, and local viral circulation. RESULTS: SARS-CoV-2 was detected in 204 participants (5%), of whom 5 were fully vaccinated (≥14 days after dose 2), 11 partially vaccinated (≥14 days after dose 1 and <14 days after dose 2), and 156 unvaccinated; the 32 participants with indeterminate vaccination status (<14 days after dose 1) were excluded. Adjusted vaccine effectiveness was 91% (95% confidence interval [CI], 76 to 97) with full vaccination and 81% (95% CI, 64 to 90) with partial vaccination. Among participants with SARS-CoV-2 infection, the mean viral RNA load was 40% lower (95% CI, 16 to 57) in partially or fully vaccinated participants than in unvaccinated participants. In addition, the risk of febrile symptoms was 58% lower (relative risk, 0.42; 95% CI, 0.18 to 0.98) and the duration of illness was shorter, with 2.3 fewer days spent sick in bed (95% CI, 0.8 to 3.7). CONCLUSIONS: Authorized mRNA vaccines were highly effective among working-age adults in preventing SARS-CoV-2 infection when administered in real-world conditions, and the vaccines attenuated the viral RNA load, risk of febrile symptoms, and duration of illness among those who had breakthrough infection despite vaccination. (Funded by the National Center for Immunization and Respiratory Diseases and the Centers for Disease Control and Prevention.).


Subject(s)
COVID-19 Vaccines , COVID-19/prevention & control , Viral Load , 2019-nCoV Vaccine mRNA-1273 , Adolescent , Adult , BNT162 Vaccine , COVID-19/diagnosis , COVID-19/virology , COVID-19 Nucleic Acid Testing , COVID-19 Vaccines/immunology , Carrier State/diagnosis , Carrier State/prevention & control , Emergency Responders , Female , Health Personnel , Humans , Male , Middle Aged , Patient Acuity , Prospective Studies , SARS-CoV-2/isolation & purification , Treatment Outcome , Young Adult
12.
MMWR Morb Mortal Wkly Rep ; 70(13): 495-500, 2021 Apr 02.
Article in English | MEDLINE | ID: covidwho-1168280

ABSTRACT

Messenger RNA (mRNA) BNT162b2 (Pfizer-BioNTech) and mRNA-1273 (Moderna) COVID-19 vaccines have been shown to be effective in preventing symptomatic COVID-19 in randomized placebo-controlled Phase III trials (1,2); however, the benefits of these vaccines for preventing asymptomatic and symptomatic SARS-CoV-2 (the virus that causes COVID-19) infection, particularly when administered in real-world conditions, is less well understood. Using prospective cohorts of health care personnel, first responders, and other essential and frontline workers* in eight U.S. locations during December 14, 2020-March 13, 2021, CDC routinely tested for SARS-CoV-2 infections every week regardless of symptom status and at the onset of symptoms consistent with COVID-19-associated illness. Among 3,950 participants with no previous laboratory documentation of SARS-CoV-2 infection, 2,479 (62.8%) received both recommended mRNA doses and 477 (12.1%) received only one dose of mRNA vaccine.† Among unvaccinated participants, 1.38 SARS-CoV-2 infections were confirmed by reverse transcription-polymerase chain reaction (RT-PCR) per 1,000 person-days.§ In contrast, among fully immunized (≥14 days after second dose) persons, 0.04 infections per 1,000 person-days were reported, and among partially immunized (≥14 days after first dose and before second dose) persons, 0.19 infections per 1,000 person-days were reported. Estimated mRNA vaccine effectiveness for prevention of infection, adjusted for study site, was 90% for full immunization and 80% for partial immunization. These findings indicate that authorized mRNA COVID-19 vaccines are effective for preventing SARS-CoV-2 infection, regardless of symptom status, among working-age adults in real-world conditions. COVID-19 vaccination is recommended for all eligible persons.


Subject(s)
COVID-19 Vaccines/immunology , COVID-19/prevention & control , Emergency Responders , Health Personnel , Occupational Diseases/prevention & control , Occupations/classification , Adolescent , Adult , BNT162 Vaccine , COVID-19/epidemiology , COVID-19 Nucleic Acid Testing , COVID-19 Vaccines/administration & dosage , Emergency Responders/statistics & numerical data , Female , Health Personnel/statistics & numerical data , Humans , Male , Middle Aged , Prospective Studies , United States/epidemiology , Vaccines, Synthetic/immunology , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL